Sine. It's the Law.	Name		
LAW1.8xv	Class		

Problem 1 – Law of Sines

Open the *Cabri Jr.* application by pressing <u>APPS</u> and selecting **CabriJr**. Open the file **LAW1** by pressing Y=, selecting **Open...**, and selecting the file. You are given $\triangle ABC$ with the measure of all angles and sides calculated.

1. Grab and drag point *B* (use the <u>ALPHA</u>) button to grab the point), and record the values of *a*, *b*, *c*, $\angle A$, $\angle B$, and $\angle C$. Repeat this three more times.

Position	а	b	С	А	В	С
1						
2						
3						
4						

2. On the calculator home screen calculate sin(A), sin(B), and sin(C). Then, calculate the following ratios: $\frac{sin(A)}{a}$, $\frac{sin(B)}{b}$, and $\frac{sin(C)}{c}$.

Position	sin(A)	sin(<i>B</i>)	sin(<i>C</i>)	$\frac{\sin(A)}{a}$	sin(B) b	$\frac{\sin(C)}{c}$
1						
2						
3						
4						

3. What do you notice about the last three columns of the table in Question 2?

4. Make a conjecture relating
$$\frac{\sin A}{a}$$
, $\frac{\sin B}{b}$, and $\frac{\sin C}{c}$.

Problem 2 – Application of the Law of Sines

- 5. State the Law of Sines.
- 6. The distance between two fire towers is 5 miles. The observer in tower *A* spots a fire 52° SE and the observer in tower *B* spots the same fire 29° SW. Find the distance of the fire from each tower.

7. A tree leans 20° from vertical and at a point 50 ft. from the tree the angle of elevation to the top of the tree it 29°. Find the height, *h*, of the tree.

8. A boat is spotted by lighthouse *A* at 25° NE and spotted by lighthouse *B* at 50° NW. The lighthouses are 10 miles apart. What is the distance from the boat to each lighthouse?

Extension – Proof of the Law of Sines

We will now prove the Law of Sines. We will prove that $\frac{\sin(A)}{a} = \frac{\sin(C)}{c}$. You can use similar methods to show that $\frac{\sin(A)}{a} = \frac{\sin(B)}{b}$ and $\frac{\sin(B)}{b} = \frac{\sin(C)}{c}$. You are given $\triangle ABC$, altitude *BD*, and sides *a* and *c*.

- 9. Using right triangular trigonometry, what is the sine ratio for $\angle A$?
- 10. Using right triangular trigonometry, what is the sine ratio for $\angle C$?
- 11. What side is common to the sine of *A* and the sine of *C*? Solve for this common side in the ratio for sine of *A* and sine of *C*.
- 12. Since the side from Exercise 13 is common to both equations we can set them equal to each other. Set your two equations equal and try to show that $\frac{\sin(A)}{a} = \frac{\sin(C)}{c}$.