

Investigating Special Triangles

Name	 	
Class		

Problem 1 – Investigation of 45°-45°-90° Triangles

First, turn on your TI-84 and press $\boxed{\text{APPS}}$. Arrow down until you see **Cabri Jr** and press $\boxed{\text{ENTER}}$. Open the file **ISOSC**. This file has a triangle with an isosceles triangle with AB = AC.

Using the **Perpendicular** tool ($\boxed{200M}$ > **Perp.**), construct a perpendicular from point *A* to side *BC*. Label the point of intersection of this line with *BC* as *D*. To name the point, they need to select the **Alph-Num** tool ($\boxed{\text{GRAPH}}$ > **Alph-Num**), select the point, and press $\boxed{x-1}$ <u>ENTER</u> for the letter D.

Construct line segments *BD* and *CD* (<u>WINDOW</u> > **Segment**) and then measure the segments (<u>GRAPH</u> > **Measure** > **D. & Length**).

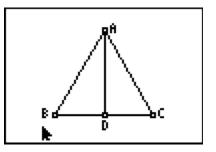
BD = _____ CD = _____

Would you have expected these segments to be equal in length?

Drag point *C* to see the effect on the lengths of the line segments. It appears that the perpendicular from the vertex always bisects the opposite side. Measure the angles *BAD* and *CAD*.

 $\angle BAD = _ \angle CAD = _$

Will they always be equal?


Investigating Special Triangles

Problem 2 – Investigation of 30°-60°-90° Triangles

Open the file **EQUIL**. Note that all three angles are 60° angles.

Construct the perpendicular from *A* to side *BC*. Label the point of intersection as *D*.

From the construction above, we know that *D* bisects *BC* and that $m \angle BAD = 30^{\circ}$.

Construct segment *BD*. We now have triangle *BAD* where $m \angle D = 90^\circ$, $m \angle B = 60^\circ$ and $m \angle A = 30^\circ$. We also have triangle *ACD* where $m \angle A = 30^\circ$, $m \angle C = 60^\circ$ and $m \angle D = 90^\circ$.

This completes the construction of two 30°-60°-90° triangles. We will work only with the triangle BAD.

Measure the three sides of triangle BAD.

AB =	BD =	AD =
------	------	------

Press (GRAPH) and select the **Calculate** tool. Click on the length of *BD*, then on the length of *AB*. Press the (-) key. Move it to the upper corner. Repeat this step to find the ratio of *AD*:*AB* and *AD*:*BD*. These ratios will become important when you start working with trigonometry.

BD:*AB* = _____ *AD*:*AB* = _____ *AD*:*BD* = _____

Drag point *C* to another location.

What do you notice about the three ratios?

Problem 3 – Investigation of 45°-45°-90° Triangles

Press the Y= button and select **New** to open a new document.

To begin the construction of the $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, construct line segment *AB* and a perpendicular to *AB* at *A*.

Use the compass tool with center *A* and radius *AB*. The circle will intersect the perpendicular line at *C*.

Investigating Special Triangles

Hide the circle and construct segments AC and BC. Explain why AB = AC and why angle ACB = angle ABC?

Why are these two angles 45° each?

Measure the sides of the triangle.

AC = _____ AB = _____

Use the **Calculate** tool to find the ratio of *AC:BC* and *AC:AB*. Once again, these ratios will be important when you study trigonometry

Drag point *B* and observe what happens to the sides and ratios.

Why do the ratios remain constant while the sides change?