Activity Overview

In this activity, students will explore relative maximums and minimums by drawing tangent lines to a curve and making observations about the slope of the tangent line. This activity uses both the script feature and a program that enables the drawing of tangent lines to be animated.

Topic: Relative Extrema

- Relative minimum
- Relative maximum
- Critical values

Teacher Preparation and Notes

- Students will need two files, main.xtreme1.89t and main.tanimat2.89p. The main.xtreme1 script asks the program main.tanimat2 to run. The program tanimat2 has numerous functions that are not explored in this brief activity.
- Before beginning the activity, review with students the definitions of relative maximum, relative minimum, and critical values.
- To download the student worksheet, go to education.ti.com/exchange and enter "11407" in the keyword search box.

Suggested Related Activities

To download any activity listed, go to education.ti.com/exchange and enter the number in the keyword search box.

- Extrema (TI-Nspire ${ }^{\text {TM }}$ Technology) — 9414
- Graphical Derivatives (TI-Nspire ${ }^{\text {TM }}$ Technology) - 8499

This activity includes screen captures taken from the TI-89 Titanium.

Compatible Devices:

- TI-89 Titanium

Associated Materials:

- XtremeCalculusPart1_Student.pd f
- XtremeCalculusPart1_Student.do C
- main.xtreme1.89t
- main.tanimat2.89p

Click HERE for Graphing Calculator Tutorials.

Introduction

After transferring the two files xtreme1 and tanimat2, students will run the script by pressing APPS, selecting the Text Editor application, and then opening xtreme1.

Students are instructed to press [F4 to advance through the script. Reading the text will provide definitions and questions similar to the student handout.

Graph 1 - Polynomial

The script sets up the window and defines a polynomial for $\mathbf{y} \mathbf{1}(x)$. The tanimat2 program uses whatever function is in $\mathbf{y 1}(x)$ for its initial exploration. It is possible to change the function without exiting the program, but the xtreme1 script will set up the viewing window and next function for students.

Students are instructed to explore 10 slopes. Their goal should be to find the x-value for when the slope is zero. (Note: the tangent line will not be shown for the last point.)

Students are asked to find the critical numbers of $\mathbf{y} \mathbf{1}(x)$. Students are asked what occurs at each critical number of $\mathbf{y} \mathbf{1}(x)$.

Student Solutions

1. $x=-3,-1,1$
2. a relative extreme value

Graph 2 - Cusp

Students are asked to find the critical numbers of $\mathbf{y} \mathbf{1}(x)$. When tanimat2 is used to explore the slope of the tangent at the cusp (at $x=0$), a domain error message occurs.

The script leads students in using CAS to confirm that the derivative at a cusp is undefined.

Students are asked what occurs at each critical number of $\mathbf{y} \mathbf{1}(x)$.

Student Solutions

3. a. $x=0,2$
b. a relative extreme value

Student Solutions

5. positive
6. negative

Graph 5 - Positive Quadratic

Students are asked if the slope of the tangent line to the left of a relative minimum is positive, negative, or zero.

Students are asked if the slope of the tangent line to the right of a relative minimum is positive, negative, or zero.

This is the end of the script. Press HOME.

Student Solutions

7. negative
8. positive

Summing It All Up

Students are asked to summarize their findings about critical numbers and local extrema.

Student Solutions

9. a. relative maximum
b. relative minimum
c. plateau

Extension

Students are asked how many extrema an nth degree polynomial can have. They are also asked to explain their answer.

Student Solution

10. $n-1$. An nth degree polynomial can only change from increasing to decreasing or vice versa $n-1$ number of times.
