Name .	 	
Class	 	

Problem 1 – Inscribed Angle Theorem

Start the *Cabri Jr.* application by pressing the APPS key and selecting **Cabri Jr.** Open the file *INSCRIB1* by pressing Υ , selecting **Open...**, and selecting the file. In *INSCRIB1*, you are given circle *D* with radius *AD*. Angle *ADB* is a central angle and $\angle ACB$ is an inscribed angle.

1. Move point A to 2 different positions and point C to 2 different positions and collect the data in the table below. Calculate the ratios of $m\angle ACB$ to $m\angle ADB$ for each position and record the calculation in the table below.

Position	Measure of ∠ACB	Measure of ∠ADB	m∠ACB m∠ADB
1			
2			
3			
4			

2. Angles *ACB* and *ADB* are said to intercept the same arc (\widehat{AB}) because they go through the same points *A* and *B* on the circle. An inscribed angle in a circle is ______ the measure of the central angle that intercepts the same arc on the circle.

Open the file *INSCRIB2*. You are given circle *D*. Angles *ACB* and *AEB* are inscribed angles and intercept the same arc.

3. Move point *A* to 2 different positions and move point *E* to 2 different positions and collect the data in the table below.

Position	Measure of ∠ACB	Measure of ∠AEB
1		
2		
3		
4		

4. Make a conjecture about two inscribed angles who intercept the same arc in a circle.

Open the file *INSCRIB3*. You are given circle *D*. Use this file to answer the following questions.

- **5.** In circle *D*, what kind of segment is *AB*?
- **6.** In circle D, what is $m \angle ACB$? (Hint: Use your answer to Exercise 4 to help you.).

Problem 2 – Extension of the Inscribed Angle Theorem

Open the file *INSCRIB4*. You are given circle D, \widehat{AB} , and $\angle ACB$. Point G is a point on \widehat{AB} , $\angle ACB$ is an inscribed angle, and AG and BG are lines.

7. Move point *A* to 2 different positions and move point *G* to 2 different positions and collect the data in the table below.

Position	Measure of ∠ACB	Measure of ∠ADB	Measure of ∠AGE
1			
2			
3			
4			

8. Make a conjecture: The angle formed by the intersection of \overrightarrow{AG} and \overrightarrow{BG} is _____ the measure of the central angle ADB.

Open the file *INSCRIB5*. You are given circle D, \widehat{AB} , and $\angle ACB$. Point G is a point on \widehat{AB} and $\angle ACB$ is an inscribed angle. Also, you are given chord AB and a tangent line BE.

9. Move point *A* to 2 different positions and move point *B* to 2 different positions and collect the data in the table below.

Position	Measure of ∠ACB	Measure of ∠ <i>ADB</i>	Measure of ∠ABE
1			
2			
3			
4			

10. Make a conjecture:	The angle between a chord and the tangent line at one of its intersection
points equals	of the central angle intercepted by the chord.