

Aim

The aim of this investigation is to learn the various features of a circle such as radius, diameter, circumference and area.

Equipment

For this activity you will need:

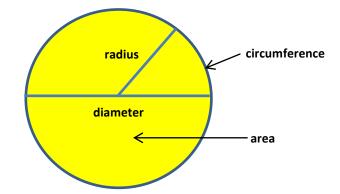
- TI-Nspire CAS (or TI-Nspire)
- TI-Nspire file Circles

Introduction – Setting up the calculations

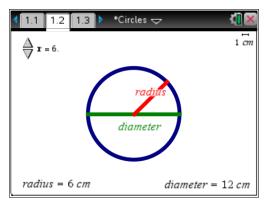
This activity requires access to the "Circles" TI-Nspire file. This file should be loaded on your device before proceeding.

Once the file is on your handheld, press **home** and select **My Documents**. Locate the "Circles" file and press **enter** to open.

Part of in this investigation requires calculations to be performed. The Scratchpad is a place where calculations can be computed and then discarded. To access the Scratchpad press **home** and select **Scratchpad** (or press **A**). Alternatively, press the key (this key is not available on a Clickpad).


₩¥	Scratchpad 🗢	1
		2
		>
		0/99

Definition of a Circle


A **circle** is a set of all points on a plane that are the same distance from a given point known as the **centre**. In this activity, we will be learning about the following features of a circle.

- radius the distance from the centre to the outside of the circle.
- **diameter** the distance across the circle that passes through the centre.
- circumference the distance around the outside of the circle
- area the inside of the circle

These circle features are labelled in the diagram below.

Open the TI Nspire **Circles** document and go to page **1.2**. Adjust the size of the circle by changing the slider. Observe the corresponding changes to the radius and the diameter.

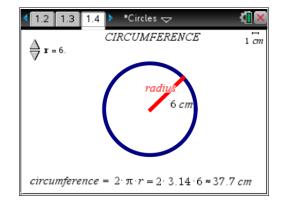
What is the relationship between the radius and the diameter?

Circumference of a Circle

The **circumference** is the distance around the outside of a circle. The formula for finding the circumference of a circle is:

Circumference =
$$2 \times \pi \times$$
 radius

$$= \mathbf{2} \cdot \boldsymbol{\pi} \cdot \boldsymbol{r} \qquad (\boldsymbol{\pi} \approx 3.14)$$


Because the diameter is twice the radius, you can also use the following formula:

 $\mathsf{Circumference} = \pi \times \mathsf{diameter}$

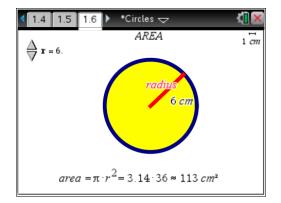
$$= \pi \cdot d$$

Go to page **1.4** of the TI Nspire **Circles** document. Adjust the size of the circle by changing the slider.

Using the slider, scroll through each value of r from 1 to 8 and record the circumference of the corresponding circle in the table below. Use the **Scratchpad** to calculate the circumference of the circles when r = 9 and 10. Let $\pi = 3.14$. The entry when r = 6 from the screen above has been entered for you.

radius (cm)	1	2	3	4	5	6	7	8	9	10
circumference (cm)						37.7				

Looking through this table, approximately how many times bigger is the circumference to the radius?


Explain your answer.

Area of a Circle

The **area** is the number of square units inside a circle. The formula for finding the area of a circle is:

Area =
$$\pi \times$$
 radius \times radius
= $\pi \cdot r^2$ ($\pi \approx 3.14$)

Go to page **1.6** of the TI Nspire **Circles** document. Adjust the size of the circle by changing the slider.

Ta Teachers Teaching with Technology Professional Development from Texas Instruments © Texas instruments, 2010 (except where otherwise indicated). You may copy, communicate and modify this material for non-commercial educational purposes provided you retain all acknowledgements associated with the material, Using the slider, scroll through each value of *r* from 1 to 8 and record the area of the corresponding circle in the table below. Use the **Scratchpad** to calculate the area of the circles when r = 9 and 10. Let $\pi = 3.14$. The entry when r = 6 from the screen on the previous page has been entered for you.

radius (cm)	1	2	3	4	5	6	7	8	9	10
area (cm²)						113				

Looking through this table, can you see a relationship between the radius and the area?

If so, describe the relationship.

Hint for finding the Circumference and Area of a Circle

The following hint may help you remember the difference between the circumference and area formulas.

Circumference = $\pi \times radius doubled$

Area = $\pi \times$ radius squared

In the example where r = 6, we get the following results.

Circumference = $\pi \times 6$ doubled = $\pi \times 12 \approx 37.7$ cm

Area = $\pi \times 6$ squared = $\pi \times 36 \approx 113 \text{ cm}^2$

Use this hint to find the circumference and area of the following circles. Use the Scratchpad to complete the table. The first entry has been completed for you.

radius	12	15	20	30	50
radius doubled	24				
circumference (units)	75.36 (24×3.14)				
radius squared	144				
area (square units)	452.16 (144×3.14)				

